Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.926
Filtrar
1.
Sci Rep ; 14(1): 10157, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698072

RESUMEN

Extraction of nucleic acids (NAs) is critical for many methods in molecular biology and bioanalytical chemistry. NA extraction has been extensively studied and optimized for a wide range of applications and its importance to society has significantly increased. The COVID-19 pandemic highlighted the importance of early and efficient NA testing, for which NA extraction is a critical analytical step prior to the detection by methods like polymerase chain reaction. This study explores simple, new approaches to extraction using engineered smart nanomaterials, namely NA-binding, intrinsically disordered proteins (IDPs), that undergo triggered liquid-liquid phase separation (LLPS). Two types of NA-binding IDPs are studied, both based on genetically engineered elastin-like polypeptides (ELPs), model IDPs that exhibit a lower critical solution temperature in water and can be designed to exhibit LLPS at desired temperatures in a variety of biological solutions. We show that ELP fusion proteins with natural NA-binding domains can be used to extract DNA and RNA from physiologically relevant solutions. We further show that LLPS of pH responsive ELPs that incorporate histidine in their sequences can be used for both binding, extraction and release of NAs from biological solutions, and can be used to detect SARS-CoV-2 RNA in samples from COVID-positive patients.


Asunto(s)
COVID-19 , Elastina , Péptidos , SARS-CoV-2 , Elastina/química , Concentración de Iones de Hidrógeno , Péptidos/química , COVID-19/virología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , Humanos , Proteínas Intrínsecamente Desordenadas/química , Extracción Líquido-Líquido/métodos , Ácidos Nucleicos/aislamiento & purificación , Ácidos Nucleicos/química , ADN/química , ADN/aislamiento & purificación , Polipéptidos Similares a Elastina , Separación de Fases
2.
PeerJ ; 12: e17071, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711623

RESUMEN

Adipose tissue in the human body occurs in various forms with different functions. It is an energy store, a complex endocrine organ, and a source of cells used in medicine. Many molecular analyses require the isolation of nucleic acids, which can cause some difficulties connected with the large amount of lipids in adipocytes. Ribonucleic acid isolation is particularly challenging due to its low stability and easy degradation by ribonucleases. The study aimed to compare and evaluate five RNA and DNA isolation methods from adipose tissue. The tested material was subcutaneous porcine adipose tissue subjected to different homogenization methods and RNA or DNA purification. A mortar and liquid nitrogen or ceramic beads were used for homogenization. The organic extraction (TriPure Reagent), spin columns with silica-membrane (RNeasy Mini Kit or High Pure PCR Template Preparation Kit), and the automatic MagNA Pure system were used for the purification. Five combinations were compared for RNA and DNA isolation. Obtained samples were evaluated for quantity and quality. The methods were compared in terms of yield (according to tissue mass), purity (A260/280 and A260/230), and nucleic acid degradation (RNA Integrity Number, RIN; DNA Integrity Number, DIN). The results were analyzed statistically. The average RNA yield was highest in method I, which used homogenization with ceramic beads and organic extraction. Low RNA concentration didn't allow us to measure degradation for all samples in method III (homogenization with ceramic beads and spin-column purification). The highest RNA quality was achieved with method IV using homogenization in liquid nitrogen and spin column purification, which makes it the most effective for RNA isolation from adipose tissue. Required values of DNA yield, purity, and integrity were achieved only with spin column-based methods (III and IV). The most effective method for DNA isolation from adipose tissue is method III, using spin-columns without additional homogenization.


Asunto(s)
Tejido Adiposo , ADN , ARN , Animales , ARN/aislamiento & purificación , ARN/genética , Porcinos , ADN/aislamiento & purificación , ADN/genética , Tejido Adiposo/metabolismo
3.
PLoS One ; 19(5): e0298857, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38696375

RESUMEN

High-cost DNA extraction procedures pose significant challenges for budget-constrained laboratories. To address this, we introduce OpenCell, an economical, open-source, 3-in-1 laboratory device that combines the functionalities of a bead homogenizer, a microcentrifuge, and a vortex mixer. OpenCell utilizes modular attachments that magnetically connect to a central rotating brushless motor. This motor couples to an epicyclic gearing mechanism, enabling efficient bead homogenization, vortex mixing, and centrifugation within one compact unit. OpenCell's design incorporates multiple redundant safety features, ensuring both the device's and operator's safety. Additional features such as RPM measurement, programmable timers, battery operation, and optional speed control make OpenCell a reliable and reproducible laboratory instrument. In our study, OpenCell successfully isolated DNA from Spinacia oleracea (spinach), with an average yield of 2.3 µg and an A260/A280 ratio of 1.77, demonstrating its effectiveness for downstream applications such as Polymerase Chain Reaction (PCR) amplification. With its compact size (20 cm x 28 cm x 6.7 cm) and lightweight design (0.8 kg), comparable to the size and weight of a laptop, OpenCell is portable, making it an attractive component of a 'lab-in-a-backpack' for resource-constrained environments in low-and-middle-income countries and synthetic biology in remote field stations. Leveraging the accessibility of 3D printing and off-the-shelf components, OpenCell can be manufactured and assembled at a low unit cost of less than $50, providing an affordable alternative to expensive laboratory equipment costing over $4000. OpenCell aims to overcome the barriers to entry in synthetic biology research and contribute to the growing collection of frugal and open hardware.


Asunto(s)
ADN , ADN/aislamiento & purificación , Diseño de Equipo , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/economía , Reacción en Cadena de la Polimerasa/instrumentación , ADN de Plantas/aislamiento & purificación , ADN de Plantas/genética
4.
Cell Biochem Funct ; 42(4): e4023, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38666547

RESUMEN

DNA quality is of paramount importance for molecular biology research. This study aimed to assess the DNA extracted from residual blood clots after serological testing, focusing on the impact of blood clot segments, extraction kits, temporary storage durations (TSDs), and thawing methods on DNA quality. We divided the residual blood clot column (BCC) from healthy donors into three segments and utilized two different extraction kits. The BCCs were subjected to four TSDs at 4°C (7 days, 10 days, 1 month, and 2 months) and three thawing methods (4°C, room temperature, and 37°C). We found that the TIANamp Blood Clot DNA Kit yielded consistently high-quality DNA from each segment with stable A260/280 and A260/230 ratios. The DNA yield showed a strong positive correlation with leukocyte concentration, and a satisfactory median DNA yield of 28.79 µg/g BCC was obtained across all segments. DNA integrity, as measured by the DNA integrity number and DNA fragment peak size, decreased with increasing TSD at 4°C, with a notable decrease after 10 days of storage. Thawing at 37°C resulted in the lowest DNA fragment peak size. In conclusion, BCC could be an ideal DNA source with satisfactory yield and purity. A prolonged TSD at 4°C leads to an obvious decrease in DNA integrity, and thawing the frozen BCC at 37°C decreases DNA fragment sizes. To maintain DNA integrity, BCCs should be cryopreserved as soon as possible after short TSDs at 4°C and thawed at 4°C.


Asunto(s)
ADN , Humanos , ADN/aislamiento & purificación , ADN/análisis , Pruebas Serológicas , Coagulación Sanguínea
5.
Methods Mol Biol ; 2757: 185-200, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38668967

RESUMEN

Long-read sequencing has proven the necessity for high-quality genomic assemblies of reference species, including enigmatic ctenophores. Obtaining high-molecular-weight genomic DNA is pivotal to this process and has proven highly problematic for many species. Here, we discuss different methodologies for gDNA isolation and present a protocol for isolating gDNA for several members of the phylum Ctenophora. Specifically, we describe a Pacific Biosciences library construction method used in conjunction with gDNA isolation methods that have proven successful in obtaining high-quality genomic assemblies in ctenophores.


Asunto(s)
Ctenóforos , ADN , Genómica , Análisis de Secuencia de ADN , Animales , Ctenóforos/genética , Genómica/métodos , ADN/genética , ADN/aislamiento & purificación , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biblioteca de Genes , Genoma/genética
6.
Methods Mol Biol ; 2744: 119-127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38683314

RESUMEN

Chelex-based DNA extractions are well suited for student DNA barcoding research because they are simple, safe, and inexpensive and can be performed without specialized laboratory equipment, allowing them to be performed in classrooms or at home. Extracted DNA is stable in Chelex solution for at least a week at ambient temperature, allowing collection of DNA samples from remote students. These extractions provide quality DNA for many taxa and are optimal for barcoding invertebrates, especially in combination with novel cytochrome c oxidase I (COI) primer cocktails and PCR cycling conditions.


Asunto(s)
Código de Barras del ADN Taxonómico , Complejo IV de Transporte de Electrones , Reacción en Cadena de la Polimerasa , Código de Barras del ADN Taxonómico/métodos , Animales , Complejo IV de Transporte de Electrones/genética , Reacción en Cadena de la Polimerasa/métodos , Invertebrados/genética , Invertebrados/clasificación , ADN/genética , ADN/aislamiento & purificación
7.
Methods Mol Biol ; 2744: 129-137, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38683315

RESUMEN

DNA barcoding employs standard molecular techniques (e.g., DNA extraction, PCR, and Sanger sequencing) to taxonomically identify biological samples. While DNA barcoding is a useful experimental workflow for in-class active learning exercises, extracting DNA from diverse sample types in a time and cost-effective manner can be challenging in a classroom setting. Here, we provide two time and cost-effective methods that have been used by novice students to successfully extract DNA from a variety of animal, fungal, algal, and plant tissues for DNA barcoding.


Asunto(s)
Análisis Costo-Beneficio , Código de Barras del ADN Taxonómico , ADN , Código de Barras del ADN Taxonómico/métodos , Animales , ADN/genética , ADN/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Plantas/genética
8.
Methods Mol Biol ; 2744: 517-523, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38683339

RESUMEN

This rapid, equipment-free DNA isolation procedure using chromatography paper is a simple method that can be performed in less than 30 min and requires no wet lab experience. With minimal expense, it offers an affordable alternative for anyone wanting to explore biodiversity. It also provides an excellent option for use in classrooms or other activities that are time limited. The method works best for plants or lichens, producing stable DNA on Whatman® chromatography paper at room temperature, which can be eluted as needed.


Asunto(s)
Código de Barras del ADN Taxonómico , Código de Barras del ADN Taxonómico/métodos , ADN/aislamiento & purificación , ADN/genética , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Plantas/genética , Cromatografía/métodos , Líquenes/genética
9.
ACS Appl Mater Interfaces ; 16(17): 22334-22343, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38635042

RESUMEN

The number of applications of self-assembled deoxyribonucleic acid (DNA) origami nanoparticles (DNA NPs) has increased drastically, following the development of a variety of single-stranded template DNA (ssDNA) that can serve as the scaffold strand. In addition to viral genomes, such as M13 bacteriophage and lambda DNAs, enzymatically produced ssDNA from various template sources is rapidly gaining traction and being applied as the scaffold for DNA NP preparation. However, separating fully formed DNA NPs that have custom scaffolds from crude assembly mixes is often a multistep process of first separating the ssDNA scaffold from its enzymatic amplification process and then isolating the assembled DNA NPs from excess precursor strands. Only then is the DNA NP sample ready for downstream characterization and application. In this work, we highlight a single-step purification of custom sequence- or M13-derived scaffold-based DNA NPs using photocleavable biotin tethers. The process only requires an inexpensive ultraviolet (UV) lamp, and DNA NPs with up to 90% yield and high purity are obtained. We show the versatility of the process in separating two multihelix bundle structures and a wireframe polyhedral architecture.


Asunto(s)
Biotina , ADN de Cadena Simple , Nanopartículas , Biotina/química , Nanopartículas/química , ADN de Cadena Simple/química , ADN de Cadena Simple/aislamiento & purificación , Bacteriófago M13/química , Bacteriófago M13/genética , ADN/química , ADN/aislamiento & purificación , Rayos Ultravioleta
10.
Bull Entomol Res ; 114(2): 203-209, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38444230

RESUMEN

Puparia are commonly found in tsetse fly larviposition sites during studies on larval ecology. This chitinous shell is representative of past or ongoing exploitation of these sites by tsetse flies. The morphological characteristics of the puparium are not sufficiently distinctive to allow identification of the species. This study explores the applicability of biomolecular techniques on empty puparia for tsetse fly species identification. Five techniques were compared for DNA extraction from tsetse fly puparia, 1/Chelex® 100 Resin, 2/CTAB, 3/Livak's protocol, 4/DEB + proteinase K and 5/QIAamp® DNA Mini kit, using two homogenisation methods (manual and automated). Using a combination of two primer pairs, Chelex, CTAB, and DEB + K proved the most efficient on fresh puparia with 90, 85, and 70% samples identified, respectively. Shifting from fresh to one- to nine-month-old puparia, the Chelex method gave the best result allowing species identification on puparia up to seven months old. The subsequent testing of the Chelex extraction protocol identified 152 (60%) of 252 field-collected puparia samples at species level. The results show that reliable genetic identification of tsetse flies species can be performed from empty puparia, what can prove of great interest for future ecological studies on larviposition sites. The Chelex technique was the most efficient for DNA extraction, though the age-limit of the samples stood at seven months, beyond which DNA degradation probably compromises the genetic analysis.


Asunto(s)
Pupa , Moscas Tse-Tse , Moscas Tse-Tse/genética , Animales , Larva/genética , ADN/análisis , ADN/aislamiento & purificación , Reacción en Cadena de la Polimerasa
11.
J Forensic Sci ; 69(3): 1002-1010, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38380584

RESUMEN

Plastic bags, such as ziplock bags, have been used to transport illicit materials worldwide; however, very few studies have tried to optimize the recovery of DNA from these items. This study reports on the best combination of swabs and moistening solution for the greatest recovery of cellular material from ziplock bags. Five swabs, two different variations of Copan Diagnostics nylon 4N6FLOQSwabs, one Medical Wire rayon DRYSWAB, one IsoHelix rayon swab, and one Livingstone cotton swab, were evaluated with two moistening solutions, Triton X-100 in either distilled water or isopropanol. Fingermarks were deposited on ziplock bags and stained with Diamond™ Nucleic Acid Dye to allow visualization of the cells pre- and post-swabbing to determine the number of cells recovered. Based on cell counting data, swabs moistened with Triton X-100 in distilled water performed better than those moistened with isopropanol. Livingstone cotton swabs had the worst recovery of cellular material, while the other swabs tested had no significant difference in their respective solutions. A comparison of the best three swabs for cellular recovery yielded no differences in the DNA concentration extracted. A linear relationship was observed between the log number of cells recovered by swabbing and the DNA concentration following extraction and quantification. The process of monitoring cell collection using fluorescence microscopy on ziplock bags allowed evaluation of swabbing efficacy. Additionally, this study highlights the ability to evaluate cellular recovery independently of traditional extraction, quantification, or profiling techniques which may unequally affect samples.


Asunto(s)
2-Propanol , ADN , Microscopía Fluorescente , Octoxinol , Manejo de Especímenes , Humanos , Manejo de Especímenes/métodos , Manejo de Especímenes/instrumentación , ADN/aislamiento & purificación , ADN/análisis , Dermatoglifia , Dermatoglifia del ADN , Recuento de Células
12.
J Forensic Sci ; 69(3): 993-1001, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38402545

RESUMEN

Latent fingerprints on plastic substrates can be visualized by using sequential treatments to enhance the contrast between the fingerprint residues and underlying substrate; however, the extent to which these processes affect subsequent DNA analysis is mostly unknown. Latent fingerprints deposited on black plastic by one donor were visualized with single-process fingerprint powders (i.e., white powder, bichromatic powder, or bichromatic magnetic powder) or sequential treatments (i.e., laser → reflected ultraviolet imaging system (RUVIS) → CA fuming → RUVIS → Rhodamine 6G, Ardrox, and MBD (RAM) or CA fuming → RAM/laser → bichromatic magnetic powder). Samples were examined after the addition of each treatment. DNA was collected using cotton swabs, extracted, quantified, and amplified. DNA yields, peak heights, number of alleles obtained, and percentage of DNA profiles eligible for CODIS upload were examined. Latent fingerprints processed with the laser and up to three sequential treatments generated DNA profiles with significantly higher peaks heights than those of the untreated samples. Fingerprints processed with the laser and up to two sequential treatments generated DNA profiles with significantly more alleles. All methods beginning with laser enhancement generated more CODIS-eligible profiles. Additional research is needed to determine the extent to which initial laser enhancement impacts the success of downstream DNA profiling results. Although DNA profile development is not guaranteed due to the variable quantities of DNA contained within latent fingerprints, the selection of an appropriate latent fingerprint visualization method could maximize both fingerprint detection and the generation of CODIS-eligible DNA profiles.


Asunto(s)
Dermatoglifia del ADN , ADN , Dermatoglifia , Humanos , ADN/aislamiento & purificación , Polietileno , Rayos Láser , Reacción en Cadena de la Polimerasa , Polvos , Repeticiones de Microsatélite , Manejo de Especímenes/métodos , Alelos , Rodaminas , Plásticos
14.
Nat Protoc ; 19(5): 1291-1310, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38267717

RESUMEN

Deep investigation of the microbiome of food-production and food-processing environments through whole-metagenome sequencing (WMS) can provide detailed information on the taxonomic composition and functional potential of the microbial communities that inhabit them, with huge potential benefits for environmental monitoring programs. However, certain technical challenges jeopardize the application of WMS technologies with this aim, with the most relevant one being the recovery of a sufficient amount of DNA from the frequently low-biomass samples collected from the equipment, tools and surfaces of food-processing plants. Here, we present the first complete workflow, with optimized DNA-purification methodology, to obtain high-quality WMS sequencing results from samples taken from food-production and food-processing environments and reconstruct metagenome assembled genomes (MAGs). The protocol can yield DNA loads >10 ng in >98% of samples and >500 ng in 57.1% of samples and allows the collection of, on average, 12.2 MAGs per sample (with up to 62 MAGs in a single sample) in ~1 week, including both laboratory and computational work. This markedly improves on results previously obtained in studies performing WMS of processing environments and using other protocols not specifically developed to sequence these types of sample, in which <2 MAGs per sample were obtained. The full protocol has been developed and applied in the framework of the European Union project MASTER (Microbiome applications for sustainable food systems through technologies and enterprise) in 114 food-processing facilities from different production sectors.


Asunto(s)
Microbiota , Microbiota/genética , Manipulación de Alimentos/métodos , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Metagenoma , Metagenómica/métodos , ADN/aislamiento & purificación , Análisis de Secuencia de ADN/métodos , Microbiología de Alimentos/métodos
15.
Methods Mol Biol ; 2685: 35-51, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37439974

RESUMEN

There are several silica-based extraction methods that utilize silica-packed columns or silica-coated paramagnetic resin and are suitable for the needs of forensic DNA analysis and/or human identification. These rely on the use of chaotropic salts to alter the affinity of DNA such that it binds strongly to silica. A variety of samples can be successfully processed with these procedures, including buccal swabs, dried or liquid blood, saliva, semen, and other typical forensic-type samples. This chapter will describe the manual extraction process for Promega's DNA™ IQ System, as well as Qiagen's QIAamp® DNA Blood Mini Kit, QIAamp® DNA Mini Kit, and QIAamp® DNA Investigator Kit.


Asunto(s)
ADN , Técnicas Genéticas , Dióxido de Silicio , Humanos , Líquidos Corporales/química , Dióxido de Silicio/química , ADN/aislamiento & purificación , Técnicas Genéticas/historia , Técnicas Genéticas/instrumentación , Técnicas Genéticas/normas , Técnicas Genéticas/tendencias
16.
Blood Transfus ; 21(2): 93-99, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35848630

RESUMEN

BACKGROUND: Fetal RHD genotyping of cell-free fetal DNA (cff-DNA) from RhD-negative pregnant women can be used to guide anti-D prophylaxis: the knowledge of fetal RhD type can direct and restrict the use of prenatal anti-D immunoglobulin exclusively to RhD-negative women carrying a RhD-positive fetus. Since November 2019 in the region of Friuli Venezia Giulia (Italy) a prenatal screening service has been offered to RhD-negative women at 22-24 weeks of gestation. MATERIALS AND METHODS: The cff-DNA is extracted from a simple peripheral maternal blood sample to analyze the fetal RHD gene: the results are interpreted as RHD-positive fetus, RHD-negative fetus, or Inconclusive. The service is shared with all regional hospitals and tests are provided free of charge by the National Health System. RESULTS: Overall, 142 RhD-negative pregnant women were recruited in nearly 2 years. Fetal RHD genotyping was negative in 53 pregnancies and positive in 89 pregnancies. Thus, unnecessary treatment of pregnant women and exposure to a scarce plasma-derived medicinal product was avoided, by the use of a single blood sample, in 37.8% of cases, representing 100% of the RhD-negative women carrying a RhD-negative fetus in our cohort. DISCUSSION: The first Italian region-wide screening service for fetal RHD genotyping has been implemented for 2 years, despite the COVID-19 pandemic, in order to obtain the predicted fetal RhD phenotype before the 28th week of gestation, during which prenatal prophylaxis is usually administered. Giving prenatal anti-D immunoglobulin exclusively to RhD-negative women carrying a RhD-positive fetus reduces the overall use of anti-D immunoglobulin, which is becoming an ever more limited resource. The high sensitivity of the procedure provides evidence that the implementation of a diagnostic test in a reference laboratory guarantees the quality of the results, the concordance of reports and the sustainability of costs, representing an excellent guide to targeted use of prophylaxis.


Asunto(s)
Diagnóstico Prenatal , Sistema del Grupo Sanguíneo Rh-Hr , Femenino , Humanos , Embarazo , ADN/aislamiento & purificación , Feto , Genotipo , Italia , Diagnóstico Prenatal/métodos , Sistema del Grupo Sanguíneo Rh-Hr/genética
17.
Prep Biochem Biotechnol ; 53(6): 591-598, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36121058

RESUMEN

During the last few years, an important element in the improvement of the molecular biology techniques has been the necessity for availability of high quality and functionality DNA. Several DNA extraction procedures with different results in both performance and quality, have been proposed. In this study our objective was to determine the most reliable extraction method that balances DNA quantity, and to assess the sample quantification of the fluorometric DNA quantification methods. For this, blood extracted by venopunction from 20 healthy volunteers was used to obtain DNA from buffy coat, and 4 commercial DNA extraction kits were assessed as well as two fluorometric DNA quantification methods with protocols of different complexity. Results suggest that manual methods achieve higher quality and larger yields of DNA. DNA purity obtained with the 4 extraction kits evaluated through the 260/280 and 260/230 ratio showed that the Qiacube kit fulfilled the criteria established in this work, followed very close by the Flexigene kit. On the other hand, the fluorometric DNA methods used in the samples quantification showed a higher variability when using QuantiFlour method, obtaining better results probably due to the simplicity of this protocol.


Asunto(s)
Capa Leucocitaria de la Sangre , ADN , Humanos , ADN/aislamiento & purificación
18.
Biosci. j. (Online) ; 39: e39001, 2023. ilus, tab
Artículo en Inglés | LILACS | ID: biblio-1425129

RESUMEN

Molecular markers are important tools in the characterization of plant genetic diversity and can provide support for conservation strategies for endangered populations. The different molecular techniques involve the evaluation of many individuals; therefore, it is crucial to have fast, efficient, and inexpensive methods for DNA extraction. Given the importance of the Aroeira (Myracrodruon urundeuva Fr. All.) it is pertinent to optimize a protocol that allows the obtainment of intact and pure DNA, aiming to assist conservation strategies for this species that is threatened with extinction. Thus, this study aimed to compare five DNA extraction methods: Dellaporta et al. (1983), Doyle and Doyle (1987) modified, Ferreira and Grattapaglia (1995), Romano and Brasileiro (2015), and Khanuja et al. (1999) and optimize the most efficient protocol for M. urundeuva. The modified DNA extraction protocol proposed by Doyle and Doyle (1987), using 100 mg of leaf tissue and 6 µl of ß-mercaptoethanol was the protocol that presented the sharpest bands after DNA electrophoresis and after the reactions of amplification employing Polymerase Chain Reaction (PCR). Therefore, it is suggested to use the protocol described by Doyle and Doyle (1987) modified for the extraction of DNA from young M. urundeuva leaves to carry out techniques involving molecular markers.


Asunto(s)
ADN/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Anacardiaceae , Cetrimonio
20.
Methods Mol Biol ; 2453: 7-42, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35622318

RESUMEN

Immunoglobulin (IG) clonality assessment is a widely used supplementary test for the diagnosis of suspected lymphoid malignancies. The specific rearrangements of the immunoglobulin (IG) heavy and light chain genes act as a unique hallmark of a B-cell lymphoma, a feature that is used in clonality assessment. The widely used BIOMED-2/EuroClonality IG clonality assay, visualized by GeneScanning or heteroduplex analysis, has an unprecedented high detection rate because of the complementarity of this approach. However, the BIOMED-2/EuroClonality clonality assays have been developed for the assessment of specimens with optimal DNA quality. Further improvements for the assessment of samples with suboptimal DNA quality, such as from formalin-fixed paraffin-embedded (FFPE) specimens or specimens with a limited tumor burden, are required. The EuroClonality-NGS Working Group recently developed a next-generation sequencing (NGS)-based clonality assay for the detection of the IG heavy and kappa light chain rearrangements, using the same complementary approach as in the conventional assay. By employing next-generation sequencing, both the sensitivity and specificity of the clonality assay have increased, which not only is very useful for diagnostic clonality testing but also allows robust comparison of clonality patterns in a patient with multiple lymphoma's that have suboptimal DNA quality. Here, we describe the protocols for IG-NGS clonality assessment that are compatible for Ion Torrent and Illumina sequencing platforms including pre-analytical DNA isolation, the analytical phase, and the post-analytical data analysis.


Asunto(s)
Reordenamiento Génico , Genes de Inmunoglobulinas , Secuenciación de Nucleótidos de Alto Rendimiento , Linfoma de Células B , Análisis de Secuencia de ADN , Células Clonales/inmunología , ADN/genética , ADN/aislamiento & purificación , Reordenamiento Génico/genética , Reordenamiento Génico/inmunología , Genes de Inmunoglobulinas/genética , Genes de Inmunoglobulinas/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Inmunoglobulinas/genética , Inmunoglobulinas/inmunología , Linfoma de Células B/diagnóstico , Linfoma de Células B/genética , Linfoma de Células B/inmunología , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA